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Abstract. Assessing the completeness of a document collection, within a domain 
of interest, is a complicated task that requires substantial effort. Even if an auto-
mated technique is used, for example, terminology saturation measurement based 
on automated term extraction, run times grow quite quickly with the size of the 
input text. In this paper, we address this issue and propose an optimized approach 
based on partitioning the collection of documents in disjoint constituents and 
computing the required term candidate ranks (using the c-value method) inde-
pendently with subsequent merge of the partial bags of extracted terms. It is 
proven in the paper that such an approach is formally correct – the total c-values 
can be represented as the sums of the partial c-values. The approach is also vali-
dated experimentally and yields encouraging results in terms of the decrease  
of the necessary run time and straightforward parallelization without any loss  
in quality.  

Keywords: Automated term extraction, terminological saturation, partial  
c-value, merged-partial c-value, optimization 

1 Introduction 

Ontology learning from texts is a developing research field that aims to extract domain 
description theories from text corpora. It is increasingly acknowledged as a plausible 
alternative to ontology development based on the interviews of domain knowledge 
stakeholders. One shortcoming of learning an ontology from texts is that the input cor-
pus has to be quite big for being representative for the subject domain. Another short-
coming is that learning ontologies from text is expensive, in terms of taken time, as it 
involves the use of several algorithms, in a pipeline [1], that are computationally hard.   
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Automated term extraction (ATE) is an essential step at the beginning of the pipeline 
for ontology learning [1, 2], that is known to be bulky in terms of the increase of the 
run time with the growth of the input text corpus. Therefore, finding a way to reduce: 
(i) either the size of the processed text; or (ii) the time spent for term extraction; or (iii) 
both is of importance.  

In our prior work [2, 3, 4, 5], we developed the ATE-based approach (OntoElect) 
that helps circumscribe the minimal possible representative part of a documents collec-
tion, which forms the corpus for further ontology learning. This technique is based on 
measuring terminological saturation in the collection of documents, which is computa-
tionally quite expensive in the terms of the run time.  

In this paper, we present the approach, based on the partitioning of a document col-
lection, which allows substantially reducing ATE run time in the OntoElect processing 
pipeline.  

The remainder of the paper is structured as follows. In Sect. 2, we outline our Onto-
Elect approach to detect terminological saturation in document collections describing a 
subject domain. In Sect. 3, we review the related work in ATE and argue for the choice 
of the c-value method as the best appropriate for measuring terminological saturation. 
In Sect. 4, we explain our motives to optimize the c-value method based on partitioning 
a document collection and present a formal framework for that. Section 5 reports on the 
setup and results of our experimental evaluation of the proposed optimization approach. 
Finally, we draw the conclusions and outline our plans for the future work in Sect. 6.  

2 Background and Research Problem 

OntoElect is the methodology for learning a domain ontology from a statistically rep-
resentative sub-collection (𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠) of the complete collection of documents (𝐷𝐷𝐷𝐷 =
{𝑑𝑑𝑖𝑖})1 describing this subject domain. The representativeness of a sub-collection is de-
cided using a successive approximation method, based on measuring terminological 
saturation. In this method, sub-collections are incrementally extended by adding several 
(𝑖𝑖𝑖𝑖𝑖𝑖) documents to the previous sub-collection in the sequence.  

Let 𝐷𝐷𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷𝐷𝐷2, … ,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , … be the sequence of incrementally extended document 
sub-collections, such that 𝐷𝐷𝐷𝐷𝐷𝐷0 = ∅ and 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖−1 ∪ {𝑑𝑑𝑗𝑗}𝑖𝑖, where  
𝑑𝑑𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑖𝑖𝑖𝑖𝑖𝑖, are chosen from the remainder of the 𝐷𝐷𝐷𝐷 using one of the possible 
ordering criteria [6]: chronological, reversed-chronological, bi-directional, random, or 
descending citation frequency. Let also 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑖𝑖 , … be the bags of retained signifi-
cant terms extracted from 𝐷𝐷𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷𝐷𝐷2, … ,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , …. In OntoElect, the measure of termi-
nological difference (𝑡𝑡ℎ𝑑𝑑) is used for comparing the bags of terms 𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1 retained from 
the successive 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖+1. It returns the difference as a real positive value. If, at some 
𝑖𝑖: (i) 𝑡𝑡ℎ𝑑𝑑 goes below the threshold of the statistical error 𝜀𝜀; and (ii) there is a convincing 

                                                           
1  In OntoElect, we do not require the availability of this complete collection. Instead, we require 

that a substantial part of it is available, which presumably contains all the significant terms 
describing the subject domain. If so, it is further revealed that 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝐷𝐷𝐷𝐷.  



 

evidence that it will never go above this threshold; then the difference (distance) be-
tween 𝑇𝑇𝑖𝑖  and hypothetical 𝑇𝑇𝐷𝐷𝐷𝐷  is not higher than 𝜀𝜀. Such a 𝑇𝑇𝑖𝑖  could be used as  
an 𝜀𝜀 -approximation of the representative set of significant terms describing the domain. 
This representative set of terms is denoted as the terminological basis (𝑇𝑇𝑇𝑇) of the sub-
ject domain. This 𝑇𝑇𝑖𝑖 , labelled further as 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, is denoted as the saturated term set, and 
the corresponding 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , labelled further as 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 , is the saturated 𝐷𝐷𝐷𝐷𝐷𝐷. The differ-
ence (𝑡𝑡ℎ𝑑𝑑) between 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 and any successive 𝑇𝑇𝑖𝑖 , including 𝑇𝑇𝐷𝐷𝐷𝐷 , is within the statistical 
error: 𝑡𝑡ℎ𝑑𝑑(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷) <  𝜀𝜀. 

In our prior work, it has been demonstrated that 𝑡𝑡ℎ𝑑𝑑 is the measure, which can be 
effectively used for comparing terminological sets as vector representations of the se-
mantic similarity/distance between document collections. However, one substantial 
shortcoming of this approach is that it is computationally expensive. Indeed, given an 
approximately fixed length of an increment {𝑑𝑑𝑗𝑗}𝑖𝑖 and the increasing size of 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , the 
method processes more and more the same part of the collection with the growth of 𝑖𝑖.  

Therefore, the computational cost (run time) for measuring 𝑡𝑡ℎ𝑑𝑑 would have been 
substantially lowered if there was a way to process only the increments of the succes-
sive sub-collections. This processing is, essentially the ATE pipeline. Hence, the re-
search problem is to prove that modifying the ATE processing pipeline for measuring 
terminological saturation to process: 

• Only the disjoint parts {𝑑𝑑𝑗𝑗}𝑖𝑖 of a document collection  
• Instead of sub-collections 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  

yields the same result and takes substantially less execution time. 

3 Related Work in ATE  

In the majority of approaches to ATE [7, 8] processing is done in two consecutive 
phases: linguistic and statistical. Linguistic processors, like POS taggers or phrase 
chunkers, filter out stop words and restrict candidate terms to n-gram sequences: nouns 
or noun phrases, adjective-noun and noun-preposition-noun combinations. Statistical 
processing is then applied to measure the ranks of the candidate terms. These measures 
are [9]: either the measures of unithood, which focus on the collocation strength of units 
that comprise a single term; or the measures of termhood, which point to the association 
strength of a term to domain concepts. 

For unithood, the measures are used such as mutual information [10], log likelihood 
[10], t-test [7, 8], modifiability and its variants [11, 8]. The measures for termhood are 
either term frequency-based (unsupervised approaches) or reference corpora-based 
(semi-supervised approaches). The most used frequency-based metrics are TF/IDF [12, 
13], weirdness [14], and domain pertinence [15]. More recently, hybrid approaches 
were proposed, that combine unithood and termhood measurements in a single value. 
A representative measure is c/nc-value [16]. C/Nc-value-based approaches to ATE 
have received their further evolution in many works: [7, 15, 17] to mention a few. 

Linguistic processing is organized and implemented in a very similar fashion in all 
ATE methods, except some of them that also include filtering out stop words. Stop 



words could be filtered out also at a cut-off step after statistical processing. Statistical 
processing is sometimes further split in two consecutive sub-phases of term candidate 
scoring, and ranking. For term candidates scoring, reflecting its likelihood of being a 
term, known methods could be distinguished by being based on (c.f. [12]) measuring 
occurrences frequencies (including word association), assessing occurrences contexts, 
using reference corpora, e.g. Wikipedia [18], topic modelling [19, 20]. 

The cut-off procedure, takes the top candidates, based on scores, and thus distin-
guishes significant terms from insignificant (or non-) terms. Many cut-off methods rely 
upon the scores, coming from one scoring algorithm, and establish a threshold in one 
or another way. Some others that collect the scores from several scoring algorithms use 
(weighted) linear combinations [21], voting [9, 3], or (semi-)supervised learning [22]. 
In our set-up [3], we do cut-offs after term extraction based on retaining a simple ma-
jority vote. Therefore, the ATE solutions, which perform cut-offs together with scoring, 
are not relevant for our approach.    

Based on the evaluations in [9, 12, 23], the most widely used ATE algorithms, for 
which their performance assessments are published, are listed in Table 1. The table also 
provides the assessments based on the aspects we use for selection.  

Table 1. Comparison of the most widely used ATE measures and algorithms (revision  
of the corresponding table in [24]) 

Method 
[Source] 

Domain-
indepen-

dence  
(+/-) 

Super-
vizion 
(U/SS) 

Measure(s) Term 
Signi-
ficance 

Cut-
off  

(+/-) 

Precision 
(GENIA; 
average) 

Run Time  
(related to  

c-value 
method) 

Tool 

TTF  
[25] 

+ U Term (Total) Frequency + -   ATR4S 
0.70; 0.35 0.34 JATE 

ATF  
[23] 

+ U Average Term Frequency + - 0.71; 0.33 0.37 ATR4S 
0.75; 0.32 0.35 JATE 

TTF-IDF 
[26] 

+ U TTF+Inverse Document 
Frequency 

+ -   ATR4S 
0.82; 0.51 0.35 JATE 

RIDF  
[27] 

+ U Residual IDF -  0.71; 0.32 0.53 ATR4S 
0.80; 0.49 0.37 JATE 

C-value  
[16] 

+ U C-value, NC-value + - 0.73; 0.53 1.00 ATR4S 
0.77; 0.56 1.00 JATE 

Weirdness 
[14] 

+/- SS Weirdness -  0.77; 0.47 0.41 ATR4S 
0.82; 0.48 1.67 JATE 

GlossEx  
[21] 

+ SS Lexical (Term) Cohesion, 
Domain Specificity 

-    ATR4S 
0.70; 0.41 0.42 JATE 

TermEx  
[15] 

+ SS Domain Pertinence, Do-
main Consensus, Lexical 
Cohesion, Structural Rele-
vance 

- +   ATR4S 
0.87; 0.46 0.52 JATE 

PU-ATR [18] - SS Nc-value,  Domain Speci-
ficity 

- + 0.78; 0.57 809.21 ATR4S 
  JATE 

Comments to Table 1:  
Domain Independence: “+” stands for a domain-independent method; “-“ marks that the method 
is either claimed to be domain-specific by its authors, or is evaluated only on one particular do-
main. We look for a domain-independent method.  
Supervision: “U” – unsupervised; “SS” – semi-supervised. We look for an unsupervised method.  
Term Significance: “+” – the method returns a value for each retained term, which could further 
be used as a measure of its significance compared to the other terms; “-“ marks that such a meas-
ure is not returned or the method does the cut-off itself. We look for doing cut-offs later.  
Cut-off: “+” – the method does cut-offs itself and returns only significant terms; “-” – the method 
does not do cut-offs. We look for “-”. 



 

Precision and Run Time: The values are based on the comparison of the two cross-evaluation 
experiments reported in [12] and [23]. Empty cells in the table mean that there was no data for 
this method in this experiment using this tool. Survey [12] used ATR4S [12] – an open-source 
software tool for automated term recognition (ATR) written in Scala (4S). It evaluated 13 differ-
ent methods, implemented in ATR4S, on five different datasets, including the GENIA dataset 
[28]. Survey [23] used JATE 2.0 [23], free software for automated term extraction (ATE) written 
in Java (J). It evaluated nine different methods, implemented in JATE, on two different datasets, 
including GENIA. Hence, the results on GENIA are the baseline for comparing the precision. 
Two values are given for each reference experiment: precision on GENIA; average precision. 
Both [12] and [23] experimented with c-value method, which was the slowest on average for 
[23]. So, the execution times for c-value were used as a baseline to normalize the rest in the Run 
Time column.  
Tool: The last column in the table names the tools used in the corresponding experiments.  

 
The information in Table 1 supports the conclusion of [23] stating that c-value is the 

most reliable method. The c-value method obtains consistently good results, in terms 
of precision, on the two different mixes of datasets [23, 12]. It could also be noted that 
c-value is one of the slowest in the group of unsupervised and domain-independent 
methods, though its performance is comparable with the fastest ones. Still, c-value out-
performs the domain-specific methods, sometimes significantly – as it is in the case of 
PU-ATR. Therefore, we have chosen c-value as the method for our experimental frame-
work.  

4 Motivation and Formal Framework 

ATE is known to be computationally expensive in the terms of run time versus the 
volume of input text. The c-value method that we have chosen for our terminological 
saturation measurement pipeline (Table 1) is more expensive than the other unsuper-
vised and domain neutral methods. Furthermore, ATE implementations are often con-
strained2 in the volume of input text. Hence, reducing the volume of text to be processed 
by the method, and partitioning it in relatively small chunks, may substantially lower 
this expense and contribute to the better scalability of the solution.   

4.1 Motivation 

The c-value method [16], as mentioned in Sect. 3, is hybrid and combines linguistic 
and statistical steps applied to the entire document collection (text corpus). The method 
starts with the linguistic pipeline, which outputs the list of term candidate strings.  
It then continues with the statistical part, which computes significance scores for these 
term candidates as c-values. The diagram of the measured run time versus the volume 

                                                           
2  For example, the UPM Term Extractor software [29], which is based on the c-value method 

and used in our experiments, does not take in texts of more than 15 Mb in volume. 



of input text, provided in Sect. 5 (Fig. 3), in the case of the conventional pipeline illus-
trates, by run time values, the computational complexity of the c-value method. 

Let us now consider a document collection 𝐷𝐷 as a composition of its disjoint parts.  
Definition 1 (A partial collection and a partition of a document collection).  

𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑖𝑖 are the partial document collections of 𝐷𝐷 and {𝐷𝐷𝑖𝑖} = {𝐷𝐷𝑖𝑖}𝑖𝑖=1𝑛𝑛  is the par-
tition of 𝐷𝐷 if the following conditions hold:  

 Condition 1: 𝐷𝐷 = ⋃ 𝐷𝐷𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 

Condition 2: ⋂ 𝐷𝐷𝑖𝑖 =𝑛𝑛
𝑖𝑖=1 ∅. 

(1) 

The linguistic part processes separate sentences. Therefore: (i) its computational 
complexity is the function of the number of sentences in a document collection; and (ii) 
the partial collections 𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑖𝑖 (Definition 1) could be processed independently 
and the outputs further merged. Hence, applying the linguistic step to the partition of 𝐷𝐷 
could at least be parallelized, which results in the runtime gain of 𝑖𝑖 times. 

In the case of OntoElect pipeline, the linguistic step is iteratively applied to the in-
crementally enlarged datasets (see Sect. 2). Therefore, the same chunks of text are pro-
cessed many times. Let us suppose that  𝐷𝐷 contains 𝑘𝑘 documents and 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘/𝑖𝑖  is the 
increment to enlarge datasets. Then, the number of documents to be processed is: 

•  In the case of the incrementally enlarged datasets: 
 𝑖𝑖𝑖𝑖𝑖𝑖 + 2 ∙ 𝑖𝑖𝑖𝑖𝑖𝑖 + ⋯+ 𝑖𝑖 ∙ 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘 ∙ 1+2+⋯+𝑛𝑛

𝑛𝑛
≈ (𝑖𝑖 + 1)/2 ∙ 𝑘𝑘, which is substantially 

more than 𝑘𝑘 if 𝑖𝑖 > 1 
• In the case of partial collections: 𝑘𝑘 

Hence, processing partial collections instead of incrementally enlarged datasets 
gives a substantial additional gain in runtime, which is (𝑛𝑛+1

2
− 1) ∙ 𝑘𝑘 times. 

Similarly, it might be reasonable to apply the statistical step of the pipeline not to 
the incrementally enlarged datasets, but to partial collections. However, it is not 
straightforward that:  

• Computing c-values for the terms extracted from the partial collections; and  
• Merging further these bags of terms with their significance scores  

will give the same result as applying the statistical step to incrementally enlarged da-
tasets. In the remainder of this section, we prove that partitioning c-value computation 
with later results merging gives correct results.  

C-value [16], further labelled as 𝑖𝑖𝑐𝑐 in formulae and equations, is built using several 
statistical characteristics of the corresponding term candidate string. These characteris-
tics are: 

• The total frequency (number) of occurrence(s) of the candidate string in the docu-
ment corpus 

• The frequency (number) of occurrence(s) of the candidate string as a part of other 
longer candidate terms 

• The number of these longer candidate terms  
• The length of the candidate string (in the number of words) 



 

Let: 𝑠𝑠 be a term candidate string; |𝑠𝑠| – the length of 𝑠𝑠 in words; 𝑙𝑙𝑠𝑠 – a longer term 
candidate string in which 𝑠𝑠 is nested as a sub-string; 𝑓𝑓(. ) – the frequency (number) of 
occurrence(s) of a term candidate string in a collection of textual documents 𝐷𝐷; 𝑇𝑇𝑠𝑠 – 
the set of extracted term candidate strings 𝑙𝑙𝑠𝑠 that nest 𝑠𝑠; and 𝑃𝑃(𝑇𝑇𝑠𝑠) – the number of 
these 𝑙𝑙𝑠𝑠. Then a (complete) 𝑖𝑖𝑐𝑐 of 𝑠𝑠 is denoted [16] as follows: 

𝑖𝑖𝑐𝑐(𝑠𝑠) = �
𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓(𝑠𝑠)   𝑖𝑖𝑓𝑓 𝑠𝑠 𝑖𝑖𝑠𝑠 𝑖𝑖𝑙𝑙𝑡𝑡 𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑎𝑎 𝑙𝑙𝑠𝑠 𝑛𝑛𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡𝑛𝑛𝑑𝑑 𝑓𝑓𝑒𝑒𝑙𝑙𝑓𝑓 𝐷𝐷 

𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) − 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

∑ 𝑓𝑓(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑠𝑠 �      𝑙𝑙𝑡𝑡ℎ𝑛𝑛𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑛𝑛 . (2) 

4.2 Merged Partial C-values 

Definition 2 (Partial c-value). The partial c-value of the term candidate string 𝑠𝑠 
extracted from the partial document collection 𝐷𝐷𝑖𝑖  is computed as:  

𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖(𝑠𝑠) = �
𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓𝑖𝑖(𝑠𝑠)   𝑖𝑖𝑓𝑓 𝑠𝑠 𝑖𝑖𝑠𝑠 𝑖𝑖𝑙𝑙𝑡𝑡 𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑎𝑎 𝑙𝑙𝑠𝑠 𝑛𝑛𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡𝑛𝑛𝑑𝑑 𝑓𝑓𝑒𝑒𝑙𝑙𝑓𝑓 𝐷𝐷𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓𝑖𝑖(𝑠𝑠) − 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖

𝑠𝑠 �      𝑙𝑙𝑡𝑡ℎ𝑛𝑛𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑛𝑛 , (3) 

where: 𝑇𝑇𝑖𝑖𝑠𝑠 is the set of term candidate strings 𝑙𝑙𝑠𝑠, that nest 𝑠𝑠, extracted from 𝐷𝐷𝑖𝑖; 𝑓𝑓𝑖𝑖(. ) is 
the number of occurrences of 𝑠𝑠 or 𝑙𝑙𝑠𝑠 in 𝐷𝐷𝑖𝑖 . 

Lemma 1 (The total frequency of nested occurrences). The total value of the fre-
quency of nested occurrences, in 𝐷𝐷, of a term candidate string 𝑠𝑠 in longer term candi-
date strings 𝑙𝑙𝑠𝑠 is the sum of the total frequency values of nested occurrences in all 
partial collections 𝐷𝐷𝑖𝑖  of 𝐷𝐷:  

𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡(𝑠𝑠) = ∑ 𝑓𝑓(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑠𝑠 = ∑ �∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖
𝑠𝑠 �𝑛𝑛

𝑖𝑖=1 = ∑ (𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑖𝑖(𝑠𝑠))𝑛𝑛
𝑖𝑖=1 . (4) 

Proof. It implies from Definition 2 (of partial c-value), that 𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑖𝑖(𝑠𝑠) is the total 
number of occurrences of the term candidate string 𝑠𝑠 in all longer term candidate strings 
𝑙𝑙𝑠𝑠 extracted from the partial collection 𝐷𝐷𝑖𝑖 . The number of these longer term candidate 
strings equals to 𝑃𝑃(𝑇𝑇𝑖𝑖𝑠𝑠). Due to the disjointness of the partial collections 𝐷𝐷𝑖𝑖  (Condition 
2 of Definition 1), 𝑓𝑓(𝑙𝑙𝑠𝑠) = ∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑛𝑛

𝑖𝑖=1 . Therefore, and due to the Condition 1 of Defi-
nition 1, the total number of occurrences of  𝑠𝑠 in all 𝑙𝑙𝑠𝑠 extracted from 𝐷𝐷 is: 

𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡(𝑠𝑠) = ∑ 𝑓𝑓(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑠𝑠 =  

= ∑ ∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑛𝑛
𝑖𝑖=1𝑙𝑙𝑠𝑠∈𝑇𝑇𝑠𝑠 = ∑ (∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑛𝑛

𝑖𝑖=1 ) =𝑙𝑙𝑠𝑠∈⋃ �𝑇𝑇𝑖𝑖
𝑠𝑠�𝑛𝑛

𝑖𝑖=1
  

= ∑ �∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖
𝑠𝑠 � = ∑ (𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑖𝑖(𝑠𝑠))𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 .  

 □   
Definition 3 (Merged partial c-value). The merged partial c-value of the term can-

didate string 𝑠𝑠 is computed as:  

𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠) = ∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖(𝑠𝑠)𝑛𝑛
𝑖𝑖=1 . (5) 

The following Theorem 1 allows computing 𝑖𝑖𝑐𝑐(𝑠𝑠) for the whole collection 𝐷𝐷 based 
on the merging of the known partial c-values 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖(𝑠𝑠), 𝑖𝑖 = 1, … ,𝑖𝑖 for the partial collec-
tions 𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1. … ,𝑖𝑖 of 𝐷𝐷. 



Theorem 1 (Equality of 𝒄𝒄𝒄𝒄 and 𝒎𝒎𝒎𝒎𝒄𝒄𝒄𝒄). If a document collection 𝐷𝐷 is partitioned 
as {𝐷𝐷𝑖𝑖} = {𝐷𝐷𝑖𝑖}𝑖𝑖=1𝑛𝑛 , which means that Conditions 1 and 2 (1) hold, then  

𝑖𝑖𝑐𝑐(𝑠𝑠) = 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠) (6) 

Proof. The proof is structured in three cases: (1) 𝑠𝑠 is never nested in 𝑙𝑙𝑠𝑠; (2) ∀𝐷𝐷𝑖𝑖, 𝑠𝑠 is 
nested at least once and at least in one 𝑙𝑙𝑠𝑠; and (3) 𝑠𝑠 is nested in 𝑙𝑙𝑠𝑠 for some 𝐷𝐷𝑖𝑖 . 

Case 1: not nested. If, ∀𝑖𝑖 = 1, … ,𝑖𝑖, 𝑠𝑠 extracted from 𝐷𝐷𝑖𝑖  is not nested in any 𝑙𝑙𝑠𝑠 ex-
tracted from 𝐷𝐷𝑖𝑖 , then 𝑠𝑠 is not nested in any 𝑙𝑙𝑠𝑠 extracted from 𝐷𝐷. Therefore, for such  
an 𝑠𝑠: 

𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠) = ∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖(𝑠𝑠)𝑛𝑛
𝑖𝑖=1 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓𝑖𝑖(𝑠𝑠) =𝑛𝑛

𝑖𝑖=1   

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ ∑ 𝑓𝑓𝑖𝑖(𝑠𝑠) =𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓(𝑠𝑠) = 𝑖𝑖𝑐𝑐(𝑠𝑠), 

(7) 

due to Conditions 1 and 2 (2) and the definition of 𝑓𝑓(. ). 
Case 2: all nested. If, ∀𝑖𝑖 = 1, … ,𝑖𝑖, 𝑠𝑠 extracted from 𝐷𝐷𝑗𝑗  is nested in an 𝑙𝑙𝑠𝑠 extracted 

from 𝐷𝐷𝑗𝑗 , then: (i) this 𝑠𝑠 (extracted from 𝐷𝐷) is nested in this 𝑙𝑙𝑠𝑠 (extracted from 𝐷𝐷); and 
(ii) 𝑙𝑙𝑠𝑠 ∈ 𝑇𝑇𝑗𝑗𝑠𝑠 ⊂ 𝑇𝑇𝑠𝑠 – because 𝐷𝐷𝑖𝑖 ⊂ 𝐷𝐷 due to condition 1. Therefore: 

𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠) = ∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖(𝑠𝑠)𝑛𝑛
𝑖𝑖=1 =  

= ∑ �𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓𝑖𝑖(𝑠𝑠) − 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖

𝑠𝑠 ��𝑛𝑛
𝑖𝑖=1 =  

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ ∑ �𝑓𝑓𝑖𝑖(𝑠𝑠) − 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖

𝑠𝑠 �𝑛𝑛
𝑖𝑖=1 =  

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �∑ 𝑓𝑓𝑖𝑖(𝑠𝑠) −∑ � 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖

𝑠𝑠 �𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 � =  

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) −∑ � 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖

𝑠𝑠 �𝑛𝑛
𝑖𝑖=1 � ≈|ℎ1  

≈|ℎ1 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) − 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

∑ �∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑠𝑠)𝑙𝑙𝑠𝑠∈𝑇𝑇𝑖𝑖
𝑠𝑠 �𝑛𝑛

𝑖𝑖=1 � =  

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) − 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

∑ �𝑓𝑓(𝑙𝑙𝑠𝑠)�𝑙𝑙𝑠𝑠∈𝑇𝑇𝑠𝑠 � = 𝑖𝑖𝑐𝑐(𝑠𝑠)  

(8) 

Here “≈|ℎ1” stands for hypothetically approximately equal. The hypothesis ℎ1 about 

the approximate equality in ∑ � 1
𝑃𝑃(𝑇𝑇𝑖𝑖

𝑠𝑠)
�𝑛𝑛

𝑖𝑖=1 ≈ 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

. Formally, ∑ � 1
𝑃𝑃(𝑇𝑇𝑖𝑖

𝑠𝑠)
�𝑛𝑛

𝑖𝑖=1 > 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

. How-

ever, asymptotically,  𝑃𝑃(𝑇𝑇𝑖𝑖𝑠𝑠) = 𝑙𝑙(𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑖𝑖(𝑠𝑠)) and 𝑃𝑃(𝑇𝑇𝑠𝑠) = 𝑙𝑙�𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡(𝑠𝑠)� due to:  
(i) the overlaps in 𝑇𝑇𝑖𝑖𝑠𝑠; and (ii) possible nestings in several instances of 𝑙𝑙𝑠𝑠. Therefore, 
the influence of those denominators in (8) becomes lower with the growth of the volume 
of  𝐷𝐷 and its partial collections 𝐷𝐷𝑖𝑖 . This is a promise that ℎ1 might be true.  

Case 3: 𝑠𝑠 is sometimes nested in 𝑙𝑙𝑠𝑠. There exist several partial collections 𝐷𝐷𝑗𝑗 , for 
which Case 2 is applied. For the rest of partial collections 𝐷𝐷𝑘𝑘 Case 1 is applied. In this 
situation two partial sums – 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐1(𝑠𝑠) and 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐2(𝑠𝑠) – are computed for these disjoint 
subsets of the partition of 𝐷𝐷. Similarly to Case 2, 𝑖𝑖𝑐𝑐(𝑠𝑠) ≈|ℎ1 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐1(𝑠𝑠) + 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐2(𝑠𝑠). 

Hence, if the hypotheses ℎ1 holds true, Cases 1-3 prove Theorem 1.  
 □   



 

For checking ℎ1, complete (𝑖𝑖𝑐𝑐) and merged partial (𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐) c-values are experimen-
tally computed and compared, as presented in Sect. 5.  

A straightforward corollary from Theorem 1 is that c-values do not depend  
on the partitioning of a document collection.  

Corollary 1 (Size of a partial collection). Let {𝐷𝐷𝑖𝑖}𝑖𝑖=1𝑛𝑛 ; �𝐷𝐷𝑗𝑗�𝑗𝑗=1
𝑚𝑚 ; 𝑖𝑖 ≠ 𝑓𝑓 be two dif-

ferent partitions of a document collection 𝐷𝐷. Then:  

∀𝑠𝑠,𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠)|�𝐷𝐷𝑖𝑖� = 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠)|�𝐷𝐷𝑗𝑗� ≈|ℎ1 𝑖𝑖𝑐𝑐(𝑠𝑠),  (9) 

where: 𝑠𝑠 is a term candidate string extracted from the document collection 𝐷𝐷; 
𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠)|{𝐷𝐷𝑖𝑖} is the merged partial c-value of the term candidate string 𝑠𝑠 computed for 
the partition {𝐷𝐷𝑖𝑖} of 𝐷𝐷; 𝑓𝑓𝑝𝑝𝑖𝑖𝑐𝑐(𝑠𝑠)|�𝐷𝐷𝑗𝑗� is the merged partial c-value of the term candidate 
string 𝑠𝑠 computed for the partition {𝐷𝐷𝑗𝑗} of 𝐷𝐷. 

Based on Corollary 1, the size of a partial collection 𝐷𝐷𝑖𝑖 ∈ {𝐷𝐷𝑖𝑖} may be reasonably 
chosen based on the specifics of the problem and available hardware resources – RAM 
in particular. One possible scenario and problem might be extracting terms from a 
stream of textual documents, like blog posts or tweets. In this setting, the size of a 
partial collection has to be smaller than the size of the stream window.  

 
Algorithm MPCV. Merge partial c-values from two Bags of Terms 
Input:  
 Ti, Ti+1 – the bags of retained significant terms. 
      Each term Ti.term is accompanied with its Ti.pcv.  
      Ti, Ti+1 are sorted in the descending order of Ti.pcv, Ti+1.pcv. 
Output: the bag of terms Ti+1 with merged Ti.pcv into Ti+1.pcv for every term 
1.  resort := .FALSE. 
2.  for k := 1 to |Ti| 
3.    match := .FALSE. 
4.    for m := 1 to |Ti+1| 
5.    if (Ti.term[k] = Ti+1.term[m])   
6.           then begin Ti+1.pcv[m] += Ti.pcv[k]; match := .TRUE.; end 
7.    if (.NOT. match) 
8.       then begin append(Ti.term[k]+Ti.pcv[k], Ti+1); resort := .TRUE.; end 
9. end for 
10. end for 
11. if (resort) then sort(Ti+1, Ti+1.pcv, desc)  
Fig. 1: The MPCV algorithm for merging partial c-values in two bags of retained significant terms 

The MPCV algorithm (Fig. 1) is used for merging partial c-values in the bags of sig-
nificant terms retained from the textual datasets representing the partial document col-
lections of the complete document collection.   

5 Experimental Evaluation 

The idea of experimental evaluation is to compare the conventional and optimized pro-
cessing pipelines based on checking: 



• The correctness. Are the merged partial c-values computed using the optimized 
pipeline practically the same as the c-values computed by the conventional pipeline? 

• Execution time. What is the difference in the duration of the extraction of the same 
bags of retained significant terms between the conventional and optimized pipelines?  

Checking correctness validates the hypothesis ℎ1 (Sect. 4) to fully prove Theorem 1. 
If ℎ1 holds true, the optimized processing pipeline could be used for extracting terms 
in the process of measuring terminological saturation in document collections. Com-
paring the execution times of the conventional and optimized processing pipelines al-
lows assessing the efficiency of the optimized pipeline. 

5.1 Experimental Data 

The document collection used in our experiments is the DMKD-300 collection, which 
contains the subset of (300) full text articles from the Springer journal on Data Mining 
and Knowledge Discovery3 published between 1997 and 2010. These papers have been 
automatically pre-processed to plain texts [24] and have not been cleaned. Therefore, 
the resulting datasets, representing partial collections, were moderately noisy. We have 
chosen the increment (𝑖𝑖𝑖𝑖𝑖𝑖) for generating the datasets to be 20 papers. Hence, based 
on the available texts, we have generated, using our Dataset Generator software 
(Sect. 5.3): 

• 15 incrementally extended datasets 𝐷𝐷1 = {𝑑𝑑𝑗𝑗}𝑗𝑗=120  (20 papers),  
𝐷𝐷2 = 𝐷𝐷1 ∪ {𝑑𝑑𝑗𝑗}𝑗𝑗=120  (40 papers), …, 𝐷𝐷15 = 𝐷𝐷14 ∪ {𝑑𝑑𝑗𝑗}𝑗𝑗=120  (300 papers)4 for the con-
ventional pipeline 

• 15 datasets of 𝑖𝑖𝑖𝑖𝑖𝑖 size forming the partition �𝐷𝐷𝑖𝑖 = {𝑑𝑑𝑗𝑗}𝑗𝑗=120 �
𝑖𝑖=1

15
4F

5 of the DMKD-300 
collection for the optimized pipeline 

The descending citation frequency (DCF) order [6] of adding documents to partial 
collections has been used in both cases. 

5.2 Instrumental Software and Computational Environment 

Our experimental workflow is appropriately supported by the developed and used in-
strumental software. The toolset is concisely presented in Table 2. 

                                                           
3  https://link.springer.com/journal/10618  
4  DMKD-300 collection in plain texts:  http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-

637dc34c-fa29-4587-9f63-df0e602d6e86; incrementally enlarged datasets generated of 
these texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-b307088c-9479-43fb-8197-
a12a66ff685b 

5  The partition of the DMKD-300 collection: https://github.com/OntoElect/Data/blob/ 
master/DMKD-300-DCF-Part.zip 

https://link.springer.com/journal/10618


 

Table 2: The modules of the instrumental software toolset used in experiments 

Phase / 
Task 

Tool Input Output Implementa-
tion 

Constraints 

Pre-Processing Phase 
Generate 
Datasets 

Dataset 
Generator 

the folder with plain 
text documents; the 
XLS file with citation 
frequencies and docu-
ment file names  

the folder with Plain 
Text datasets; the table 
with run time per da-
taset 

C#, 
https://github.co
m/OntoE-
lect/Code/tree/m
aster/DataSet-
Gen-cs  

 

Terms Extraction Phase 
Extract 
Terms 

UPM Term 
Extractor 
[29] 

the folder with plain 
text datasets 

the folder with the 
bags of terms; the table 
with run-time per bag 
of terms 

Java, 
https://github.co
m/ontologylearn
ing-oeg/epnoi-
legacy    

English texts 
only, c-value 
method [16], 
input data of 
at most 15 Mb 

Merge par-
tial 
c-values 

MPCV the folder with the 
bags of terms; the list 
of files to be processed 

the folder with the 
bags of terms with 
merged c-values; the 
table with run-time per 
bag of terms 

Python, 
https://github.co
m/OntoElect/Co
de/tree/master/
MPCV  

 

Post-processing Phase 
Compute 
Termino-
logical Dif-
feren-ces 

Baseline 
THD 

the folder with the 
bags of terms; the list 
of files to be processed 

The table containing 
eps, thd, values for the 
consecutive pairs of 
the bags of terms 

Python, 
https://github.co
m/OntoE-
lect/Code/tree/m
aster/THD  

uses the base-
line THD al-
gorithm [4] 

5.3 Experimental Flow 

The set-up of our experiments includes the configuration of the execution flow in two 
parallel processing pipelines – conventional and optimized, as pictured in Fig. 2. 

The conventional pipeline implements the processing of incrementally extended 
document sub-collections, as explained in Sect. 2. It takes in the files of the document 
collection in the specified (DCF) order and generates the incrementally extended da-
tasets (Sect. 5.1) using the dataset generator (Table 2). At the next step, the datasets are 
fed into the term extractor software (Table 2) which outputs the bags of extracted terms 
𝑇𝑇𝑖𝑖  and measures run times 𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛𝑖𝑖.  

The optimized pipeline implements the processing of the partitioned document sub-
collections as explained in Sect. 4. It takes the files of the document collection in the 
same order (DCF) and generates partition datasets (Sect. 5.1) using the dataset genera-
tor (Table 2). At the next step, the datasets are fed into the term extractor software 
(Table 2) which outputs the bags of extracted terms 𝑇𝑇𝑖𝑖  and measures run times. At the 
subsequent step, the extracted sets o terms are fed into the merger module (Table 2) 
which applies the MPCV algorithm (Sect. 4.2) consequently to the pairs {𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1} as 
pictured in Fig. 2. As a result, the merged bags of terms 𝑇𝑇𝑖𝑖𝑚𝑚 = ⋃ 𝑇𝑇𝑖𝑖𝑖𝑖

𝑘𝑘=1  are generated. 
The run times of the merge operation are also measured. The required total run times 
(𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛𝑖𝑖𝑚𝑚) are computed as the sums of the respective term extraction and merge run 
times.   
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Fig. 2: The execution flow of evaluation experiments 

After executing these two parallel branches, if ℎ1 (Sect.4) holds true,  𝑇𝑇𝑖𝑖  coming 
from the conventional pipeline and 𝑇𝑇𝑖𝑖𝑚𝑚 coming from the optimized pipeline have to 
contain very similar sets of terms with approximately the same c-values. This is 
checked by applying the THD algorithm [4] implemented in the Baseline THD module 
(Table 2). THD is applied: (i) to the pairs {𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1} and {𝑇𝑇𝑖𝑖𝑚𝑚,𝑇𝑇𝑖𝑖+1𝑚𝑚 } for comparing satu-
ration curves for conventional and optimized cases; and (ii) to the pairs {𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑚𝑚}  for 
computing terminological difference between hypothetically the same sets of terms. 

All the computations, except term extraction, have been run on a Windows 7 64-bit 
HP ZBook 17 G3 PC with: Intel® Core™ i7-6700HQ CPU, E7400 @ 2.60 GHz; 8.0 
Gb on-board memory; NVIDIA Qadro M3000M GPU. Term extraction has been run 
on an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz, 64 cores, 256GB server. 
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5.4 The Results of Experiments and Discussion 

The results of our experiment are presented in a tabular form in Table 3 and graphically 
pictured in Fig. 3 and Fig. 4.  

Table 3: thd measurements and run times for the conventional and optimized pipelines 

Bag of Terms 
No (i) 

eps 
  

thd Run Times (sec) 
𝑻𝑻𝒊𝒊−𝟏𝟏,𝑻𝑻𝒊𝒊 𝑻𝑻𝒊𝒊−𝟏𝟏𝒎𝒎 ,𝑻𝑻𝒊𝒊𝒎𝒎 𝑻𝑻𝒊𝒊,𝑻𝑻𝒊𝒊𝒎𝒎 𝑻𝑻𝒊𝒊 𝑻𝑻𝒊𝒊𝒎𝒎 

1 12.00 62.89 62.89 0.00 30.41 31.94 
2 15.50 31.51 32.22 3.64 60.47 32.79 
3 18.00 23.38 22.17 2.85 85.34 31.64 
4 19.65 18.04 17.63 3.08 111.72 31.85 
5 23.22 15.80 15.57 3.31 147.30 37.11 
6 24.00 10.07 9.50 3.86 153.78 32.25 
7 24.00 10.67 10.14 3.40 195.27 41.49 
8 26.00 9.14 9.19 5.28 217.62 43.28 
9 28.00 8.68 8.54 6.95 268.59 47.16 

10 28.53 7.56 7.42 5.21 296.49 41.32 
11 28.53 7.30 6.44 6.13 324.39 41.58 
12 28.53 6.53 6.56 5.88 363.05 45.20 
13 30.00 6.43 5.42 10.07 401.94 40.55 
14 38.00 15.47 3.13 9.09 401.19 39.81 
15 38.00 3.53 15.37 6.14 459.75 50.12 

 
Fig. 3(a) clearly shows that the results of saturation measurements using the bags of 

terms resulting from the optimized pipeline (𝑻𝑻𝒊𝒊−𝟏𝟏𝒎𝒎 ,𝑻𝑻𝒊𝒊𝒎𝒎 column in Table 3 and Merged 
Partial curve in Fig. 3(a)) and conventional pipeline (𝑻𝑻𝒊𝒊−𝟏𝟏,𝑻𝑻𝒊𝒊 column in Table 3 and 
Incremental curve in Fig. 3(a)) are practically the same, except the last two measure-
ments. The deviation at the tail could be explained that regular noise is accumulated 
differently in these two cases. A nice side result in this context is that the optimized 
pipeline using merged partial c-values accumulates less regular noise. Fig. 3(b) clearly 
pictures the fact that the difference between the bags of terms  
𝑇𝑇𝑖𝑖  and 𝑇𝑇𝑖𝑖𝑚𝑚 does not exceed approximately 1/3 of the individual term significance thresh-
old 𝑛𝑛𝑝𝑝𝑠𝑠 that is used to cut-off insignificant terms. In the combination, these two obser-
vations reliably prove6 our hypothesis ℎ1 (Sect. 4).  

The comparison of the run times presented in Table 3 and Fig. 4 clearly demonstrates 
that the optimized pipeline, with near to constant values, outperforms the conventional 
pipeline significantly. 

                                                           
6  One may argue that the reported experiment is just an experiment with one document collec-

tion. Hence for a different document collection the results might be different regarding the 
validity of ℎ1. Our counter-argument is that the computation of c-values is collection and 
domain-independent. Furthermore, the terms with the same c-value are randomly distributed 
in the documents of the collection. 



    
        (a) Saturation measurements         (b) Terminological differences 

Fig. 3: Merged partial c-values computed using the optimized pipeline are practically the same 
as the c-values computed using the conventional pipeline  

 
Fig. 4: Run times of the conventional (Incremental) and optimized (Merged Partial) pipelines 

6 Conclusions and Future Work 

The contribution of this paper is the proposal of computing significance scores (c-val-
ues) for term candidates extracted from a document collection using not the incremen-
tally extended datasets, representing sub-collections, but the partitions of the collection. 
It has been proven formally, up to the validity of the ℎ1 hypothesis, that this optimized 
approach is correct – i.e. gives practically the same results. The hypothesis has been 
validated experimentally, by comparing the outputs coming from the conventional and 
optimized processing pipelines.  

The experiment also clearly showed that the proposed way of text processing very 
substantially outperforms the conventional approach. The run times measured while 
processing partitions of the document collection remained almost constant in consecu-
tive steps. A tiny increase was observed due to the very small overhead for merging the 
bags of terms extracted from the partition datasets. Yet one more advantage of the pro-
posed approach is that partition datasets could be processed independently as these do 
not overlap in data. Hence, the optimized pipeline is straightforwardly parallelizable. 
This fact opens the way to process real world document collections at industrial scales 



 

for finding terminological cores within these collections. Choosing a proper partition 
size also removes the limitation of many software term extractors on the volume of 
input data.  

Our plan for the future work is to apply the optimized processing pipeline to detect 
terminological saturation in the industrial size paper collection in the domain of 
Knowledge Management.  
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